248. Photochemistry of 5,5-Dimethyl-2(5H)-thiophenone

by René Kiesewetter and Paul Margaretha*

Institut für Organische Chemie, Universität, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

(5.IX.85)

On irradiation ($\lambda > 305$ nm) in alcohols, 5,5-dimethyl-2(5*H*)-thiophenone (**1b**) is converted to (*E*)-4-mereapto-4-methyl-2-pentenoates **8**. These esters undergo a consecutive light-induced reaction affording thiolanes when irradiated in the presence of alkenes, and either 2,3-dihydrothiophenes or 3-thiabicyclo[3.1.0]hexanes with alkynes.

We have recently presented results [1] [2] on the photochemical behaviour of 2(5H)-thiophenone (1a) which, in contrast to the corresponding furan derivative [3], does not

undergo typical enone reactions as cyclodimerization or [2 + 2] cycloaddition to olefins, but instead reacts with alcohols to give 4-mercaptocrotonates. We have now synthesized 5,5-dimethyl-2(5*H*)-thiophenone (1b) and have developed a new synthesis of the 3,4-dimethyl isomer 1c to investigate their photochemistry and compare it to that of 1a.

Title compound **1b** was synthesized from thiolactone **2** via the ketene O,S-acetal **3** and the bromothiolactone **4**. Compound **1c** was obtained from 3,4-dimethylthiophene (**5**) via H_2O_2 oxidation of the boronic ester **6**. Compound **1c** had already been formed together with other isomers by methylation of 4-methyl-2(5*H*)-thiophenone (**1d**) [4], which in turn is obtained as the major product together with the 3-methyl isomer **1e** in a similar sequence starting with 3-methylthiophene (**7**) [5] (Scheme 1).

Irradiation ($\lambda > 305$ nm) in alcohols affords (*E*)-4-mercapto-4-methyl-2-pentenoates 8 selectively (*Scheme 2*). The reaction proceeds about twice as fast as the analogous formation of 4-mercaptocrotonates from 1a and again does not occur in the dark. In contrast, the 3,4-dimethyl isomer 1c is not converted to a mercapto-ester; even after a tenfold irradiation period (as compared to 1a or 1b), less than 5% of starting material is consumed.

On further irradiation, ester 8a is slowly converted to a new product 9, whose formation can be monitored by ¹H-NMR spectroscopy, but isolation by either chromatography or preparative GC failed due to its decomposition and/or polymerization. The assignment of a ketene-acetal structure to 9 is based on this ¹H-NMR data alone and has

Table. Spectroscopic Data of 1b-e and of Photoproducts 8-12

Com- pound ^a)	UV (Cyclo- hexane)	- IR (Film)	¹ H-NMR (CDCl ₃)	¹³ C-NMR (CDCl ₃)	MS
1b	334 (1.19)	1680	7.27, 6.12 (AB, J = 6.0);	198.5 (s); 164.7 (d);	128 (M ⁺)
	319 (1.64)	1600	1.67 (s, CH ₃)	128.6(d); 58.6(s);	
	267 (3.28)			28.0(q)	
1c	319 (1.20)	1680	3.85 (m, 2 H);	200.3 (s); 158.7 (s);	128 (M ⁺)
	307 (1.67)	1640	$2.15, 1.8/(m, CH_3)$	134.9(s); 38.8(t);	
	255 (3.20)			17.5, 10.1(q)	
1.3	220 (3.00)	1695	$6.07(t_{\pi}, I = 1.2, 1.0)$		$M(M^{+})$
10	324(1.18)	1665	0.07 (lq, J = 1.2, 1.9);		114 (M1 ·)
	311(1.39)	1640	3.98 (aq, J = 1.5, 1.2), 2 20 (dt $J = 1.0, 1.3)$		
1.	201 (3.20)	1680	2.20 (al, J = 1.9, 1.3) 7.24 (tg, $J = 3.0, 1.5$)		$u_A(M^{\dagger})$
1c 8a	239 (3.23)	1660	7.24 (lq, J = 3.0, 1.5), 3.94 (lq, $I = 3.0, 2.2)$)		114 (MI ·)
		1640	5.94 (uq, J = 5.0, 2.2), 1.91 (dt. $I = 1.5, 2.2)$)		
		1730	1.51(ai, j = 1.5, 2.2) 7 07 5 81 (AB $J = 15.7$)	b) 166.7 (c): 155.5 (d):	$160 (M^{+})$
8b		1650	$3.74 (c \text{ OCH}_{2})$	116.7(3), 155.5(a), 116.7(a)	67
		1050	$1.95 (r, SH) \cdot 1.52 (r, CH_{\rm c})$	A79(a), 305(a)	07
		1720	7 10 5 81 (AB I = 157)	^b) 166 3 (c): 155 2 (d):	$174 (M^{+})$
		1650	$A_{22}(a I = 7.0)$	116.8(d): 60.2(t):	67
		1050	$2.01 (s, SH): 1.55 (s, CH_s):$	42.9(s): 30.6(a):	0/
			1 33 (t I = 7.0)	143(a)	
8c		1720	7.04 5.83 (AR) I = 15.7)	^b) 165.9 (s): 155.0 (d):	$188 (M^{+})$
		1650	5.52 (M I = 6.3)	117.2(d): 67.6(d):	95
			1.97 (s. SH): 1.54 (s. CH ₂):	43.0(s): 30.6(a):	
			1.25 (d, J = 6.3)	21.9(a)	
8d		°) 1710	6.97, 5.72 (AB, J = 15.7);	^b) 165.8 (s): 154.4 (d):	$202 (M^+)$
		1640	$1.97 (s, SH): 1.52 (s, CH_3):$	118.5(d): 79.9(s):	57
			$1.49 (s, C(CH_2)_2)$	42.9(s): 30.8(q): 28.2(q)	• ·
9		b	5.42 (dm, J = 10.0, 1.0);		
			4.47 (d, J = 10.0);		
			3.32, 3.17 (s, OCH ₃)		
			$1.55, 1.47 (d, J = 1.0, CH_3)$		
10a		1740	3.66 (s, OCH ₃);	173.6 (s); 57.5 (d);	216 (M ⁺)
			2.85, 2.42 (AB, J = 11.2);	54.4(s); 51.5(q);	127
			2.13 (d, J = 7.0, 2 H);	47.3 (s); 44.9 (t);	
			2.07(t, J = 7.0); 1.38,	34.0(q); 31.2(t);	
			1.29 (s, CH ₃);	28.8(q); 27.6(q);	
			1.04 (s, CH ₃ , 6 H)	21.8(q)	
10Ь		1745	3.70 (s, OCH ₃); 2.63–2.26	174.0; 56.9; 55.4;	244 (M ⁺)
			$(ABX, J_{AB} = 14.6, J_{AX} = 8.3,$	51.6; 51.1; 50.8;	128
			$J_{BX} = 5.8$; 1.41, 1.39, 1.27,	35.6; 31.7; 30.2;	
			1.17, 0.98, 0.82 (s, CH ₃)	28.1; 23.6; 22.5; 19.8	
11a		°) 1745	$5.80(s); 3.71(s, OCH_3);$	173.6 (s); 148.8 (s);	242 (M ⁺)
			$3.00-2.22 (ABX, J_{AB} =$	117.4(d); 60.3(s);	57
			16.8, $J_{AX} = 10.0$, $J_{BX} =$	51.8(q); 51.6(d);	
			$(0.8); 1.48, 1.30 (s, CH_3);$	34.7(s); 31.7(t);	
			$1.14 (s, C(CH_3)_3)$	30.7(q); 29.8(q);	
	045 (0.01)			22.3(q)	
125	245 (3.31)	1730	3.71 (s, OCH ₃);	1/2.9(s); 54.3(s); 51.6(q);	242 (M ⁺)
			3.19, 3.04 (AB, J = 11.7);	45.7 (a, J(U,H) = 165);	
			2.34, 1.79 (AB, J = 4.2);	42.3(s); 38.5(t); 31.8(q);	
			1.40, 1.30 (s , CH_3);	29.9(1); 29.1(1); 20.2(q); 24.7(d, U(C,H)) = 166);	
			1.50–0.00 (<i>m</i> , 9 H)	$24.7(a, J(C, \Pi)) = 100);$ 22.7(t):14.0(a)	
				22.7 (<i>t</i>), 14.0 (<i>q</i>)	

^a) All new compounds (except 9) gave satisfactory elemental analyses. ^b) In C_6D_6 . ^c) In KBr.

to be considered as tentative. When the irradiation of **1b** (or **8**) is run in the presence of alkenes, thiolanes **10** are obtained in reasonable yields. Irradiation in the presence of 3,3-dimethyl-1-butyne affords 2,3-dihydrothiophenes **11**. Analogous formations of five-membered sulfur heterocycles had also been observed with **1a** and the mechanism of these conversions have been discussed in detail [2]. However, when 1-hexyne is used as acetylene, selective formation of a new type of product **12** is observed (*Scheme 3*). The spectroscopic data of the new compounds is summarized in the *Table*.

The photochemistry of five-membered α,β -unsaturated thiolactones is apparently not influenced by Me groups on the saturated C-atom; however, it is strongly affected by Me groups on the C=C bond. The non-reactivity of 1c as compared to 1a or 1b could be due to a much faster radiationless decay of excited 1c. Such a shortening of the life-time of an excited molecule by additional alkyl groups is known as a 'loose-bolt' effect [6].

On the other hand, the Me groups exert a strong steric effect on the product distribution in the subsequent photochemical step. On irradiation, the (E)-4-mercapto-4-methyl-2-pentenoates 8 undergo homolysis of the S-H bond in analogy to the 4-mercaptocrotonates (obtained from 1a). The Me groups in α -position to sulfur in the alkylthio radical 13 slow down the rate of addition to alkenes or alkynes, and at the same time facilitate the formation of 9 which contains a trisubstituted C=C bond. This explains the lower yields of cycloadducts from 8 (40-15%) as compared to those of the 4-mercaptocrotonates (85-60%) [2]. In addition, the two Me groups also slow down the rate of H transfer to radicals 14 and 15. This explains the formation of the thiabicyclohexane 12b from 15b, where ring closure to a cyclopropane occurs faster. In 15a, the bulky t-Bu group prevents such a cyclization, and, therefore, the 2,3-dihydrothiophene 11a is formed, again in analogy to the reaction of the mercaptocrotonates with 3,3-dimethyl-1-butyne.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Experimental Part

General. See [2]. Tetrahydrothiophen-2-one (2) and 3,4-dimethylthiophene (5) were synthesized according to [7] and [8], resp. 3-Methylthiophene, the alkenes, and alkynes were purchased from Fluka AG. All solvents used for photolyses were of spectral grade. GC was performed on a SE-30 capillary column. Irradiations were performed in an Applied Photophysics photoreactor using a 250-W Hg lamp and a liquid filter with cut-off at 305 nm.

Preparation of 5,5-Dimethyl-2(5 H)-thiophenone (1b). a) 2,2-Dimethyl-5-(trimethylsilyloxy)-2,3-dihydrothiophene (3). To a freshly prepared soln. of lithium diisopropylamide (from 0.15 mol of $(i-Pr)_2NH$ and 96 ml of 1.6M BuLi (0.15 mol)) in dry THF (90 ml) is added a soln. of 2 (19.5 g, 0.15 mol) in THF (50 ml) during 5 min at 0°. After stirring for 30 min, Me₃SiCl (39 ml, 0.30 mol) is added during 5 min, and then the mixture is stirred at r.t. for 30 min. LiCl is filtered under N₂, the solvent evaporated, the residue treated with Et₂O, and Et₂O again evaporated to afford 3 (28.8 g, 95%), which is used as it is for the next step. Purification can be achieved by distillation (b.p. 38-40°/0.4 Torr), ¹H-NMR (CDCl₃): 4.40 (t, 1H); 2.50 (d, 2 H); 1.48 (s, 6 H); 0.15 (s, 9 H).

b) 3-Bromo-5,5-dimethyl-2-thiolanone (4). To a soln. of 3 (28.8 g, 0.142 mol) in CHCl₃ (90 ml) at -10° is added Br₂ (7.3 ml, 0.142 mol) in CHCl₃ (20 ml). Stirring is continued for 5 h, then 40 ml of H₂O are added, the CHCl₃-phase is separated and the aq. phase extracted with Et₂O. The combined org. phases are dried (MgSO₄), the solvent evaporated and the residue purified by chromatography (SiO₂, hexane/AcOEt 2:1) to afford 22.5 g (75%) 4, oil, ¹H-NMR (CDCl₃): 4.68 (dd, J = 10.2, 7.0); 2.67 (dd, J = 13.5, 7.0); 2.48 (dd, J = 13.5, 10.2); 1.70, 1.68 (s, CH₃), ¹³C-NMR (CDCl₃): 199.8 (s); 53.3 (s); 50.3 (d); 49.9 (t); 31.3 (q); 31.2 (q).

c) 5,5-Dimethyl-2(5H)-thiophenone (1b). A mixture of 4 (22.5 g, 0.106 mol), LiBr (32.1 g 0.37 mol), and Li_2CO_3 (20.5 g, 0.276 mol) in dry dimethylacetamide (300 ml) is heated at 100° under N₂ for 3 h. After cooling to

r.t., H_2O (1000 ml) and Et_2O (100 ml) are added; the org. phase is separated and the aq. phase extracted with Et_2O (3×). The combined Et_2O phases are washed with sat. NaHCO₃- and NaCl-solns. and dried (MgSO₄). The solvent is evaporated and the residue distilled, the fraction boiling at 66–76°/2 Torr being further purified by chromatography (SiO₂, hexane/EtOH 20:1) to afford **1b** (12.6 g, 91%), b.p. 73°/1 Torr.

3,4-Dimethyl-2(5H)-thiophenone (1c). 1. From 3,4-Dimethylthiophene (5). To a soln. of 5 (5.5 g, 0.049 mol) in dry Et₂O (50 ml) under N₂ at r.t. are added 33.5 ml of a 1.6M BuLi soln. in Et₂O. The mixture is refluxed for 30 min, then cooled to -70° , and a soln. of (MeO)₃B (5.6 g, 0.054 mol) in Et₂O (50 ml) is added. The mixture is stirred at -70° for 4 h (formation of 6). At r.t., 30% H₂O₂ (9.8 ml) is added and the mixture refluxed for 1 h. The org. layer is separated and the aq. phase extracted with Et₂O. The combined org. phases are dried (MgSO₄), the solvent evaporated, and the residue chromatographed (SiO₂, hexane/AcOEt 20:1) to afford 1c (2.9 g, 46%), m.p. 48° (from CCl₄).

2. From 4-Methyl-2(5H)-thiophenone (1d). a) 4-Methyl-2(5H)-thiophenone (1d) and 3-methyl-2(5H)-thiophenone (1c). Same procedure as above starting from 3-methylthiophene (7, 4.8 g, 0.049 mol) (metallation, addition of (MeO)₃B and H₂O₂-oxidation). After workup, the residue is distilled, the fraction boiling at 76–88°/3 Torr containing 1d and 1e in a 94:6 ratio. This mixture is separated by chromatography (SiO₂, hexane/AcOEt 7:1) to afford 1e (250 mg, 3%), m.p. 33° (from hexane) and 1d (4.3 g, 46%), b.p. 63°/0.3 Torr.

b) Methylation of 1d. To a soln. of 1d (3.85 g, 0.034 mol) and CH₃I (4.3 ml, 0.068 mol) in CHCl₃ (35 ml) are added tetrabutylammoniumbisulfate (11.5 g, 0.034 mol) and NaOH (2.7 g, 0.068 mol) in H₂O (35 ml). The mixture is stirred for 60 h at r.t. After addition of 2N HCl (33 ml), the org. layer is separated and the aq. phase extracted with CHCl₃ (2×). Evaporation of the solvent and addition of Et₂O leads to precipitation of the ammonium salt. After filtration, the Et₂O soln. is dried (MgSO₄), the solvent evaporated, the residue distilled and the fraction boiling at 69–80°/1 Torr recrystallized from CCl₄ to afford 1c (1.65 g, 43%), m.p. 48°.

(E)-4-Mercapto-4-methyl-2-pentenoates 8. Ar-degassed solns. of 1b (256 mg, $2 \cdot 10^{-3}$ mol) in alcohol (MeOH, EtOH, i-PrOH, *t*-BuOH; 10 ml) are irradiated for 24 h to a conversion of about 40%. Evaporation of the solvent, purification by chromatography (SiO₂, hexane/AcOEt 2:1) and bulb-to-bulb distillation (100°/15 Torr) affords 8a (90 mg, 28%; oil), 8b (80 mg, 24%; oil), 8c (80 mg, 22%; oil) and 8d (100 mg, 26%) m.p. 65°. The yields of 8 corrected for the degree of conversion of starting material are in the order of 55–70%.

Prolonged Irradiation of 1b in MeOH (Formation of s-trans-1,1-Dimethoxy-4-methyl-1,3-pentadiene (9)). An Ar-degassed soln. of 1b (64 mg, $5 \cdot 10^{-4}$ mol) in MeOH (5 ml) is irradiated for 80 h. The solvent is evaporated at r.t. and the residue dissolved in Et₂O. The Et₂O soln. is separated from insoluble material, the solvent evaporated, and the residual oil (35 mg) analyzed by ¹H-NMR spectroscopy; it contains 9 of about 80% purity.

Irradiation of **1b** in MeOH in the Presence of Alkenes or Alkynes. Ar-degassed solns. of **1b** (256 mg, $2 \cdot 10^{-3}$ mol) and 10^{-2} mol of 2,3-dimethyl-2-butene, 3,3-dimethyl-1-butyne, or 1-hexyne in MeOH (10 ml), or a soln. of **1b** (256 mg) in MeOH (10 ml) saturated with 2-methylpropene are irradiated up to total consumption of starting material. After evaporation of the solvent, the residue is purified by bulb-to-bulb distillation and subsequent chromatography on SiO₂.

Methyl 2,2,4,4-Tetramethyl-3-thiolaneacetate (10a). Irradiation time: 105 h, 130°/15 Torr, hexane/AcOEt 7:1, 160 mg (36%), oil.

Methyl 2,2,4,4,5,5-Hexamethyl-3-thiolaneacetate (10b). Irradiation time: 380 h, 140°/15 Torr, hexane/AcOEt 7:1, 50 mg (10%), oil.

Methyl 4-(tert-Butyl)-2,2-dimethyl-2,3-dihydro-3-thiopheneacetate (11a). Irradiation time: 90 h, 150°/15 Torr, hexane/AcOEt 4:1, 130 mg (28%), m.p. 133°.

Methyl trans-5-Butyl-2,2-dimethyl-3-thiabicyclo/3.1.0]hexane-6-carboxylate (12b). Irradiation time: 260 h, 150°/15 Torr, hexane/AcOEt 7:1, 110 mg (23%), oil.

REFERENCES

- [1] E. Anklam, P. Margaretha, Angew. Chem. 1984, 96, 360; ibid. Int. Ed. 1984, 23, 364.
- [2] E. Anklam, P. Margaretha, Helv. Chim. Acta 1984, 67, 2198.
- [3] E. Anklam, P. Margaretha, Helv. Chim. Acta 1983, 66, 1466.
- [4] B. Cederlund, A. B. Hörnfeldt, Acta Chem. Scand. 1971, 25, 3324.
- [5] B. Cederlund, A. Jesperson, A. B. Hörnfeldt, Acta Chem. Scand. 1971, 25, 3656.
- [6] N.J. Turro, 'Modern Molecular Photochemistry', Benjamin, 1978, p. 170.
- [7] C. M. Stevens, D. S. Tarbell, J. Org. Chem. 1954, 19, 1966.
- [8] H. Boelens, L. Brandsma, Recl. Trav. Chim. Pays-Bas 1972, 91, 141.